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A VARIATIONAL METHOD OF DETERMINING THE EIGENFREQUENCIES 

OF A LIQUID IN A CHANNEL* 

N.G. KUZNETSOV 

Plane free oscillations of a liquid in channel of constant cross-section 
are considered. The spectral problem whose eigenfunctions are the 
stream functions is investigated for the first time in this setting. 
The eigenvalues of the spectral parameter occurring in the boundary 
condition on the free surface are determined by a variational method. 
The properties of the stream functions are identified, and these 
properties can be used to reconstruct the flow pattern. In particular, 
it is shown that the nodal lines on which the stream eigenfunction 
vanishes (compare with the membrane problem considered, e.g., in /l/j 
necessarily join the free surface with the bottom. It is proved that 
the first, and under certain conditions also the second, eigenvalue is 

simple. Upper bounds of these eigenvalues are obtained. One bound 
depends only on the geometrical characteristics of the flow region and 

the other only on the corresponding eigenfunction. 

The linear eigenvalue problem of a liquid with a free surface has been traditionally 
analysed in terms of the velocity potential and formulated as a Steklov mixed problem. The 
latter has usually been solved by a variational method and a method based on potential theory. 
Both are applicable for a fairly wide class of regions and are convenient for numerical 

implementation. The research of the last decade is surveyed in /2/, which describes the 
results of non-Soviet authors, and in /3/, which primarily focuses on Soviet studies. 

1. The spectral problem for the stream function. Assume that an ideal incompressible 
heavy liquid in equilibrium fills a channel of cross-section W. The simply connected region 
WC_ R_' = ((z, y) : y<O} has a piecewise boundary without cusp points, and aW=FiJB,Fn 
B = @. Here the free surface of the liquid F = (a-, (I+) lies on the abscissa axis and the 
entire curve B (the channel bottom) lies in R_" with the exception of its ends (a*, 0) 
which are the corner points of aW. 

Plane free time-harmonic oscillations of a liquid in a channel are usually described by 

the spectral problem /2-6/ 

G"u=OinW,u,-vu=0 onF, h/an = 0 on B n R_= (1.1) 

which necessitates finding the eigenvalues of the parameter v and the corresponding real 

eigenfunctions from the Sobolec space H’(W) that satisfy the condition iud.z =O. Here n 

is the outer normal toaW,vg(g is the free-fall acceleration) is the square of the free 
oscillation frequency, andthe function u is the oscillation velocity potential up to a time- 
harmonic multiplier. 

Problem 11.1) has a discrete spectrum O<vl <v2 < . . ..<vn < . . . which can be determined 
by the variational method, and the functional to be minimized is given by 

s IVz+dsdy/Su2dx 
u Y 

Let v be an eigenvalue of problem (1.1) and u the corresponding eigenfunction. Denote 

by V the harmonic function in W which is the conjugate of u (the stream function). This 
function is defined, apart from a constant term, which is chosen so that u=o on El. This 
is feasible because lJ = const on B due to the condition on B in (1.1) and the Cauchy-Riemann 
equations. If we replace uy with --u, in the condition on F in (1.1) and then dif- 
ferentiate the resulting equality with respect to X and again apply the Cauchy-Riemann 
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equations, we obtain the relationship 

VXX + vvll = 0 on F 

Thus, Y is an eigenvalue and V is the corresponding 

VZu=OinW,u,,+Yv,=OonF, 
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(1.2) 

eigenfunction in the problem 

v=OonB (1.3) 

We can similarly show that any eigenvalue of problem (1.3) is an eigenvalue of problem 
(1.1). 

The generalized solution of problem (1.3) is the function VE Ha'(W) n H,'(F), that 
satisfies the integral identity 

S v,q,dz-vpv.vqd5dy=0 (1.4) 
F 

for any function T) EH~'(W) n H,'(F). Here Hnl(w) is the subspace in H’(W) that 
consists of functions that vanish on B ,Q R_= /7, Sect.7.1.5/ and H,‘(F)- is the closure 
of the set of smooth functions with a compact support on P in the norm of H’(F). 

By (1.2), problem (1.3) can be reduced to the operator spectral problem Lq --MT =O 
in the space L,(F). Here L is a positive definite operator with the domain DL = Ha(F) n 
H,’ (F) that acts by the formula Lcp = -da(pld.9, and the operator M is defined as follows. 
Its domain is Dar = H,’ (F) ; TEDM is continued harmonically to the region W (the 
harmonic continuation is also denoted by (p) so that cp=o on B. Then (Mq~)(z) = 'pV (2, 0). 

The existence of an infinite sequence of eigenvalue o<r,dv,d...~~Ynd...Vn-m as 
IL-CO, for the equation Lp--MT= 0 can be established by passing to problem (1.1). Indeed, 
the energy space of the operator L is H,'(F) /8, Sect.9/. We also know /7, Ch.l/ thatH"*(P) 
is the energy space of the positive definite operator M. The required fact now follows /8, 
Sect.44/ from the compact embedding of H,'(F) in H"'(F). 

By the variational eigenvalue method /8/, we have 

v, = inf {<LEA cp> /<Mv, cp>: 'P E H,' (0, 

(MT, (P&) = 0, k = 1, . . ., n - I} 

(1.5) 

where 'plr is the eigenelement of the equation L~J -vMcp = 0 that corresponds to the eigen- 
value ve, and <., .> is the duality relation between H-“(F) and fl (F) extending the 
scalar product in L,(F). Here and henceforth, vr is defined in the same way as Y, without 
the last condition under inf. 

By (1.4), Eq.tl.5) is equivalent to the following: 

Y,= inf {SV,P~I/~IO~(~~~~~:~EHH~(W)~ He*(F). (1.6) 

S Vv.vv,dxdy=0, k = l,...,Ll} 
w 

where uk is the eigenfunction of problem (1.3) corresponding to the eigenvalue vk. 

2. Nodal Zincs of stream eigenfunctions. The nodal lines of stream eigenfunctions are 
the lines where vt = 0. By the maximum principle for harmonic functions, it follows that 
the stream eigenfunction VI; does not have isolated roots in W. The region VC W is called 

the nodal region of the function vk if vk#O in V and b’V 
consists of a nodal line of the function vk and possibly 

Y 
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sections of the free surface P and arcs of the curve B (compare 

F the corresponding definition for the membrane problem /l/). 
The nodal line of the function v k obviously is not closed 

w, ) ’ ___ ) 
z and does not have both end points on B. Indeed, otherwise, by 

w2 ,I the uniqueness theorem for the Dirichlet problem, uI -0 in 

/w, II the region enclosed by the nodal line or between B and the 
nodal line and thus Vk z 0 in W. 

Lenuna 1. Any nodal line of the stream eignefunction of a 

Fig.1 liquid has one end point on F and other end point on B and the 
nodal lines do not intersect (Fig-l). 

Proof. We will show that the nodalline of the function uk does not join two points on 
the free surface F. In fact, otherwise let 
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r uk in W’ 

‘I= 0 in W\W' 

Here W' is the nodal region between F and the nodal line with both its end points on F. 
Introduce the functions 'p, (2,~) = 'pl (z + &, I/) 0 = 2, ., k), where 
that a shift by t, along the abscissa axis takes the-region W' 

tl#t, for i#j and all& are such 
to a region contained in W. 

Continue the functions 

the functions 91 (i = 1, 
combination 0 = a,% + 

which are equivalent to 

The function CD belongs 
u on F. It therefore 

vpI (i = 2, ., k) as zero so that they are defined everywhere in W. Since 
., k) are linearly independent, there exists a non-trivial linear 

+ ak’Pk such that 

s 
@ (8uj/8y)dz = 0, , = 1,. . ., k - 1 

the equalities 

d 
VCD.‘i?ojdsdy=O, i=l,..., k-l 

to the class HB1(W) n H,'(F) and satisfies the condition @,,+ Y&,~ 
minimizes the functional (1.6). Hence we conclude that 0 is an 

eigenfunction and is therefore harmonic in W. Since 6 is identically zero in some subregion 
contained in W, then CD=0 in W, and we obtain a contradiction. 

Theorem 1. The stream eigenfunction U, corresponding to the eigenvalue Y, changes its 
sign on F at most n-1 times. Its nodal lines partition W into at most n subregions. 

Proof. By our lemma, the nodal lines of the function U, partition W into a certain 
number of subregions N (Fig.1). Assume that N> n and define the functions 

Qi = { 
u, in WI 

0 inW\Wi 

which belong to the class HE?(W) r! H"'(F). These functions are linearly independent and a 

linear combination Y = b,$, + . . i- b,% exists that satisfies the orthogonality conditions 

JCY.Pvjdsdy=O, j=l, . . ..n-1 (compare with the proof of the lemma). Since Yy,, C v,YV = 0 

on F, thenY minimizes the functional (1.6), which shows that Yis harmonic in W.Since N>n, 

we have Y,sO in some subregion contained in W. We have obtained a contradiction. The 
theorem is proved. 

Remark 1. The proof of Theorem 1 relies on the idea used in Courant's nodal line theorem 
for a vibrating membrane (see, e.g., /l/). It was also shown in /l/ that for the membrane we 
have the inequality N,<n for sufficiently large n, where N, is the number of nodal regions 
of the n-th eigenfunction. The example of a rectangular channel for which 

nn (Y + 4 nnd 
u, = sin +h7, v,+th-i_ 

where (0, I) is the free surface and (-d,O) is the channel wall, shows that the number of 
nodal regions of the function v, in the oscillating liquid problem may equal n for all 
n=l,2,.... 

CoroZZary 1. The trace on F of the eigenfunction U, corresponding to the eigenvalue 
has at most n extremum points. In particular, 

2s precisely one maximum on F (Fig.2) 
q (we assume that it is positive in W) 

, which coincides with max {ul (x, y): (5, y) E W}. 

Proof. At the extremum point, the derivative (%laz) (2, 0) changes its sign. Pass to 
the conjugate function U, harmonic in W. By the Cauchy-Riemann equations and the condition 
on F from (l.l), %I (5, 0) also changes its sign at the extremum point of the function c‘, (3.0). 
It has been shown /9/ that u* (111) changes its sign on F at most n times (precisely once). 
Therefore, % (z, 0) has at most n extremum points (ul(z,O) has precisely one maximum) on F 
(at least one maxi;llum exists for vl(z,O), because v, (a*, 0) = 0). The equality max (I+ (5, 0): 
ZE (~,a+)) = max (u~(I,Y):(z,Y) E tY) holds by the maximum principle for harmonic functions and the 
boundary conditions in (1.3). 

Remark 2. By Corollary 1, the level lines of the function v1 (the flowlines of the 



461 

liquid wave motion for the principal eigenfrequency) have the form shown in Fig.3. The dif- 
ference between the values of the function V, corresponding to adjacent lines is constant 
(compare with Fig.2). 

Fig.2 Fig.3 

CorotZary 2. The eigenvalue v1 is simple. 

Proof. Assume that two eigenfunctions u' and 0" correspond to the eigenvalue v,. Then 
by Theorem 1 both functions may be regarded as positive. Denote by M' and M” the maxima of 
the functions U' and V" which are attained at the points (~'~0) and (z". 0) , respectively 
(see Corollary 1). If Z' #z", then the function M”u - M’u” changes its sign on F, which 
contradicts Theorem 1. If =' = =I', then the function M”u’- M’u” either identically vanishes, 
which contradicts the linear dependence of U' and V", or has three zeros on F and therefore 
no fewer than two extrema on F, which contradicts Corollary 1. 

CoroZZary 3. If the trace u,(s,O) does not have points of inflection on F, then u1 is 
the only stream function which is sign-constant on W. In this case, the function vz has 
precisely one nodal line. 

Proof. By assumption, the derivative swat’ and therefore au,lay (see the boundary 
condition on F in (1.3)) are sign-constant on F. By formula (1.6), the eigenfunctions v,, . . . . 

u*, . . . should satisfy the orthogonality condition 

s 
Vv,,.Vu,dz dy = 

s 
un (av,/ag) d2 = 0, n = 2,3, . . . 

w F 

By the sign-constancy of the derivative au,laY , the functions v,, . . . . u,, . should change 
their sign. By Theorem 1, the function z+ has at most one nodal line, and therefore it has 
precisely one nodal line. 

Remark 3. If the eigenfunction corresponding to the eigenvalue Y% has a nodal line, 
then by Corollary 1 in each of the two nodal regions the flowlines have the form shown in 
Fig.3. 

CoroZZary 4. If only stream eigenfunctions with nodal lines correspond to the eigenvalue 
yp, then v2 is simple. 

Proof. Assume that two linearly independent eigenfunctions v' and v" with nodal lines 
correspond to the eigenvalue Y%. By Theorem 1, each function changes its sign F precisely 
once and can be chosen so that 

5 
"'U"d2 = 0. Therefore, the points where v' and v" change 

their sign are distinct. Without loss of generality we may take u'(z,O)<O for 2 3 2' and 
U" (z,O)~O_ for 22 I", where +' <z". 

Consider the expression 1u (2, t) = (1 - t) v' (2, 0) + to" (z,O). where t~(0, il. Clearly, for any 
t E [O, 11 and 5 E (5'. 2') , we have the inequality m (2, Q>O. Define the sets 

T' = (f E [O, 11: w(z, t) < 0 for some z<z'l, 
T" = (t E [O, 11: Lo (2, 1)< 0 for some S> 2"). 

We see that T' = (0, t') and T" = (t", 11 for some t' and t". If t" < t', then for f E (t”, t’) the 
function w(2.t) changes its sign on F no less than twice, which contradicts Theorem 1. If 
t' < t', then for t E Et', t”1 and all z E (a-, a+) we have the inequality w(z,t)>O, which con- 
tradicts the condition. 

Remark 4. The method of proving Corollary 4 was used in /9/ to prove that the eigenvalue 
Vl is simple, Moreover, propositions similar to Lemma 1 and Theorem lwereproved in /9/ for 
the velocity potentials of plane modes of a liquid in a channel. 

Now consider the existence of points of inflection of the trace on F of the eigenfunction 
Vl. We will need a lemma, which follows from the results of /lo/. 
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Lemma 2. Let p be the angle between 
(a.4 0); B E (0, n). 

F and the one-sided tangent to B at the point 
Then for fi#n/2 the asymptotic expansion of the eigenfunction in the 

neighbourhood of the point (a_, 0) has the form 

vn = C,c") {p"/fi sin @O/p) - Y&I (n + p)-lpl+a'fl [cos (1 f n/b)@ + (2.2) 
ctg B sin (1 + n/B)Ol} + C2(n)p2xlfi sin (2&/p) + v,+ 

Here v,* is a function of class P(W) 
6 E 10, 1): [J, 8 

such that the relationship u,,* = o(pzf6) holds 
for any are polar coordinates with the origin (a_, 0) and the axis directed 
alongF,e E (-p,O). 

un* $(_J = 42 ‘ (2.2) is replaced with the asymptotic formula u,~.= C,(")pcos 0 + vn*, where 
and the relationship vR* = o($'*) holds for any 6 E IU, 2). 

A similar proposition holds for the point (u+,O). 

Remark 5. In formula (2.21, at least one of the constants CR(R) (for k> 2 then enter 
the expansion of the function v,*) should be non-zero, because otherwise by the "strong" zero 
theorem /11/ the function v,, vanishes identically in the neighbourhood of the point (a-. 0) 
which is impossible. 

For a positive function v1 in W we have the inequality C,(l) < 0. Indeed, if we assume 
that this is not so, then the inequality s>O breaks down in the neighbourhood of the point 
(a_, 0). 

Now from (2.2) we have 

Corollary 5. If fi # 42, then (av,/at)(a_, 0)= 0, n = 1, 2, . . . . A similar proposition 
holds for the point (a,, 0). 

Theorem 2. Assume that at least one of the two angles between F and the one-sided 
tangents to B at the points (a*, 0) is not n/2. Then the function Vl (2, 0) has at least 
one point of inflection. 

Proof. Without loss of generality, we may assume that the angle with the apex at the 
point (a_, 0) is not n/2 - By Corollary 5, we have the equality (Q/&)(a_,O} = 0 and there- 
fore near the point (a-,0) the positive function v,(x,O) is convex downward. Near the 
maximum point (see Corollary l), this function is convex upward, which implies the existence 
of a point of inflection for Y VI (x7 0). 

Remark 6. Example (2.1) shows that the condition B # 42 in Corollary 5 is essential; 
the function v~(z,O) does not necessarily have a point of inflection if both angles between 
F and B are n/2. 

3. Baunds on the eigenvalues. For any XE (a_,~_,) let d (2) = min {I y I: (3, y) E B}, d = 
sup (d (5): 2 E (a-, a,)). Let u= Hal, and therefore the function U(L, y) is absolutely 
continuous in y for almost all x E (6, a,), so that 

Integrating over F, we obtain by (1.6) 

v,<dinf{~~,~ dx/S v2 ds : u E Hsl (WI nH,,l (F)} 
F F 

(3.1) 

Any function from H,‘(F) obviously can be continued in W so that its continuation 
belongs to HB~ (W). Therefore from (3.1) we have 

v1 < d inf{~uxzdz/~ v2 d.c:u fH,l(F)} 

The last inf gives the first eigenvalue of the operator L, which equals (M)"* where 
1 = Q+ - a_. We have thus proved the following theorem. 

Theorem 3. VI.< d(n/l)a. 

Remark 7. The inequality in Theorem 3 is exact in the following sense (isoperimetric). 
For a channel with a rectangular cross-section of width 1 and depth d, the first eigenvalue 
(see (2.1)) is equivalent to d(n/l)g when d/l - 0. The ratio of the left- and right-hand sides 
of the inequality from Theorem 3 therefore goes to 1 for rectangular channels in which the 
ratio of the depth td the width tends to zero. 

Remark 8. If the region W is contained in a rectangle having the same free surface, then 
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Theorem 3 is obtained from (2.1) and the following fact (see, e.g., /4, 6/I. If two regions 
have the same free surface and one of the regions is contained in the other, then the first 
eigenvalue is greater for the larger region. At the same time, Theorem 3 is quite general, 
which is evident from examining the region shown in Fig.4. 

‘Y 

a_ F 

Fig.4 

Remark 9. The method of deriving inequality (3.1) was applied in /12/ in connection 
with some auxiliary problem which has no physical meaning, 

Theorem 4. 

zv, 4 s u 
~,~d~dy~rnax{~~(.r.O)~:~~[~_,a,]}~~~d~dy (3.2) 

Proof. The identity 

j/dxdy=- s v[sv,+yv,]dxdy 
w 

is obtained directly by integration by parts. Here and henceforth, the subscript 1 is omitted 
for simplicity. 

Define the curvilinear coordinate system (a, 0, where 0 is the arc length along the 
level line of the function u and 5 is the length of the perpendicular to the level line 
(for details, see /13, p.413/). Let W(v*) be the subregion contained in W where v> v*. Let 

H,(u*) = 1 vdxdy; H, (0’) = - 1 u [xv, + yu,] dx dy 
W(a*) Ww+) 

By the shape of the level lines of the function U (Fig.3), these quantities may be ex- 
pressed as follows: 

H,(u*)=“~vdv 5 \VuI-'do 
.* B(V) 

H,(~*)=~~vdv 5 (xn,+ yn,)do; B (v) = 8W(v) \a 
0' BOO 

Here u,,, is the maximum value of the function v in m, (r&n,) is the outer normal to 
di:’ (v). Clearly, 

s (.m + YW,) do = 2.4 (v) 
J-VU) 

where A (v) is the area of the region W(v). 
By the classical isoperimetric inequality, we have 

dH1 -- == 2u*A(v*),< g IaW(v*)jZ<< 1 B(u*) la (3.3) 
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(I -*I is the length of the line). At the same time, by the Cauchy-Bunyakovskii-Schwarz in- 
equality, we may write 

- dH,/dv” = U* B~~~)I~L’/-lda~~*[iil~~ldO]Z/ s [y’v]do = 
Ato*) 

L‘* [ B (CT*) 12 I[- s dZ’/YllE do] 
wm*) 

By Green's formula and the condition on F from (l-3), the denominator of the last ex- 
pression equals 

where (a+ (v*),O) are the end points of the level line B(v*) located on F. By Corollary 1, 
the right-hand side of the last equality is positive and does not exceed 

K = 2~,-' maa {I 11, (z, ())I: .r E ]a_, a,]} 

which is finite by Lemma 2. Therefore 

-Gr,/du* > L.* /B (&q,“/K 

Comparing this inequality with (3.3), we obtain 

d [H, - 2a-‘KH,l/du* 2 0 

Integration of this inequality gives 

H, (II,) - 2n-‘KH, (v,) > H, (0) - 2n-“KH, (0) 

Hence, using the definition of N, and fiI,, we obtain the required inequality, because 
H, (4 = H, (Q,) = 0. 

Remark 10. The underlying idea of the proof of Theorem 4 was used in /14/ to obtain a 
lower bound on the first eigenvalue in the fixed membrane problem. 

CoroZZary 6. Let v2 be the stream eigenfunction corresponding to the eigenvalue Y*. 
Then an inequality similar to (3.2) holds with v1 replaced by v2 and u1 by I&). 

Proof. If the function 0% is sign-constant (positive), then by Corollary 1 it has a 
unique maximum, which lies on F. Its level lines have the form shown in Fig.3. To obtain 
the required inequality, it suffices to repeat verbatim the proof of Theorem 3. 

If the function u, has a nodal line (precisely one by Theorem l), then its level lines 
in each nodal region have the form shown in Fig.3. Then by the proof of Theorem 4, for each 
nodal region W, (i= 1, 2) we obtain an inequality of the required form with WI replacing W. 
Summing all these inequalities, we conclude the proof of Corollary 6. 

Remark 71. Using the inequality Za,Z &.(&I,)~, where ui > 0, and a technique applied to 
prove Corollary 6 when up has a nodal line, we can generalize the inequality from /14/ in 
the following way. Let L be an eigenvalue and w,, the corresponding eigenfunction of the 
free oscillation problem for a fixed membrane. Then for any n=1,2,..., we have the in- 
equality 

1. 
2. 
3. 

4. 
5. 

6. 

Here D is the region occupied by the membrane in the position of equilibrium. 
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DIFFRACTION OF A SHORT ACOUSTIC WAVE BY A SMOOTH BODY WITH 
A DISCONTINUITY IN THE RADIUS OF CURVATURE OF ITS SURFACE* 

V.N. LIKHACHEV 

The propagation of a short acoustic wave in an ideal fluid when the 
radius of curvature of the wave front is discontinuous is considered. 
Such a wave arises if a short acoustic wave with a continuous radius of 
curvature is reflected from a smooth body whose surface has a 
discontinuity in the radius of curvature. The size of the body and its 
radius of curvature are assumed to be much greater than the wavelength. 

In the immediate proximity of a body, an incident wave is reflected as a locally plane 
wave according to the laws of geometrical acoustics. Further from the body, geometrical 
convergence or divergence of rays begins to have an effect, and this determines the wave 
dynamics. If one of the radii of curvature of the body has a discontinuity along a line, the 
radius of curvature of the wave front also has a discontinuity, which lies on rays that 
originate from the points of the radius-of-curvature discontinuity line on the body surface. 
The geometrical acoustics solution produces 
different sides of these rays, i.e., 

different values of the wave amplitude on 
it has a strong tangential discontinuity and is thus 

inapplicable in .the neighbourhood of rays that correspond to the curvature discontinuity of 
the wave front; diffraction of the reflected wave is observed in this region. We will derive 
a solution that describes the reflected wave everywhere, including the diffraction zone. The 
solution is obtained by matching asymptotic expansions, 
applied to a number of other problems /l, 21. 

a method which has been previously 
The transverse profile of the wave is 

arbitrary and it is only required to satisfy the condition of zero perturbations on the 
leading characteristic. 

Different wave-front geometries are possible. If the front is convex on both sies of 
the discontinuity, the diffraction zone goes to infinity. An interesting application of this 
problem is the design of a focusing reflector with a rounded edge. In this case, the 
intensity of the wave reflected from the concave reflector increases near the focus, while 
the intensity of the wave reflected from the convex edge decrease. The diffraction zone 
where these two geometrical acoustics solutions are matched may play an important role in 
flow calculations in the focal zone, because the opening angle of the focused wave decreases 
as we approach the focus while the diffraction zone increases. Our solution makes it 
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